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Abstract

In this thesis, we propose to solve a series of real-world applications using optimization models and
algorithms defined by machine learning techniques. We propose to obtain (i) mathematical programming
problems closer to reality by meta-modeling techniques and (ii) efficient heuristic algorithms based on
imitating exact combinatorial optimization algorithms.

Context

Training a neural network can be viewed as merely interpolating a complex function. In many applications,
describing the objective function or the constraints with a mathematical formulation is impossible. In these
situations, resorting to tools from the vast black-box optimization field is necessary. A well-established
technique in black box optimization is the so-called meta-modeling. Metamodeling forms a subfield of
Machine Learning that represents a complex model f with a simpler surrogate model f̂ at the price of some
approximation. One of the advantages of using the surrogate model is to enable a faster computation of
new values of f̂ , as simulations are usually expensive to compute. For a more in-depth analysis of Surrogate
Modeling, we refer the reader to [1, 2].

In [3], we propose to use a new objective function for a Dial-a-Ride Problem (DaRP) that considers the
history of requests and the policy used by the online advertisement algorithm. Learning the objective function
is only part of the job. The natural next step is to try to optimize it. In [3], we use a local search heuristic
algorithm developed by a transportation company to optimize over the learned meta-model. The idea of not
stopping at the learning phase by adding a subsequent optimization phase, using the learned function, is quite
promising and has gathered some attention in recent years in the optimization community. For example,
some works aiming at solving Neural Networks with generic MILP solvers are already available [4, 5, 6].

In [7], we propose to learn the function that returns its expected solving time for a given clique decom-
position. The results obtained, even if preliminary, are promising. They show that it is possible to learn
such a function, and it can be used to choose among different decompositions the most promising. From an
optimizer point of view, the idea of optimizing “by enumeration” over a limited set of options is only the
first (and unsatisfactory) step. The actual gain will come if we optimize the learned objective function over
the whole set of feasible decompositions (in a similar way to that done in [3], where to find an optimal set of
routes, we used a learned objective function). This could be done, for example, with an ad-hoc local search
heuristic. An alternative is to use a Reinforcement Learning approach, where an agent is trained by learning
from an expert, represented by the learned objective function. ML can be used as a fast heuristic to obtain
good solutions by learning from an effective (but slow) optimization algorithm. This approach can also be
viewed as a kind of imitation learning [8], where the expert is an optimization algorithm. In [9, 10], a Graph
Neural Network is used to estimate which variables in a MIP will be part of an optimal solution. This allows
to reduce the size of the problem by fixing a part of the variables and solving the reduced problem quickly,
without losing the quality of the solution.

Applications

In this section, we present three examples of potential applications that can be used to test the techniques
mentioned.



Dial-a-Ride Problem with a Neural Network as objective function As a follow-up of the work
in [3], we propose to use as an objective function for a Dial-a-Ride Problem (DaRP) a Neural Network
using rectified linear unit (ReLU) as an activation function. We, therefore, propose to solve it with an
exact algorithm, instead of a local search heuristic algorithm, as performed in [3]. It is possible to show
that a Neural Network using rectified linear unit (ReLU) as an activation function can be modeled as a
0-1 Mixed Integer Linear Program [4]. An exciting research direction based on this idea is to investigate
the polyhedral properties of such a model [6]. More precisely, we propose to investigate the convex hull of
the intersection of the constraints representing the ReLU activation function with the constraints used to
describe the Dial-a-Ride Problem. This would allow us to speed up the exact resolution of the newly defined
model.

Neural architecture search (NAS) for aerial drones Neural architecture search (NAS) is a cutting-
edge technique in the field of deep learning that automates the process of designing and optimizing neural
network architectures. The traditional approach to designing neural networks involves manually selecting
the network architecture, followed by a trial-and-error process of tweaking the hyperparameters to achieve
the desired performance. This process can be time-consuming and highly dependent on the researcher’s
expertise. On the other hand, NAS searches through a vast space of potential neural network architectures
and selects the most optimal one for a given task. This approach not only saves time and effort but also has
the potential to discover novel and highly efficient network architectures that might have yet to be discovered
through manual design.

NAS can be applied to various deep learning tasks such as image classification, object detection, speech
recognition, and natural language processing. It has the potential to significantly improve the performance
of these tasks by finding the best neural network architecture for the given data and problem. NAS also
applies to scenarios with limited computational resources, such as mobile devices and edge computing, as it
can identify lightweight and efficient neural network architectures that can run on such devices.

We propose to identify the most effective design for a neural network to control an aerial drone. By
“effective”, we mean the design that can provide the best accuracy, defined through an appropriately defined
loss function. The idea is to start with a supernet that resumes all the possible choices that can be taken
with respect to the architecture and subsequently simplify it. We propose to learn a surrogate function able
to capture not only the contribution of an architectural choice but also the interactions between two choices.
This can be achieved by using a surrogate function that is quadratic.

Unmanned Aerial Vehicles as additional wireless network Unmanned Aerial Vehicles (UAVs) can
be used as aerial base stations and exploit their flexible and quick deployment to enhance the wireless network
performance. In this context, it is crucial to have efficient algorithms able to identify both the placement of
the drones and the associated resource allocation in a UAV-aided RAN slicing system. In the first work, we
propose to use an algorithm based on Reinforcement Learning to identify the correct placement and resource
allocation. We also propose to use a quadratic model to identify the optimal solution to the same problem.
The solutions provided by the exact model are better than the ones obtained with the Reinforcement Learning
approach. We therefore plan to use an imitation learning approach where the optimal placement and slicing
are learned from the exact mathematical model. In this way we can achieve high-quality solutions quickly
enough to use the algorithm in real time.

Required skills

The Ph.D. student should have a master’s degree in combinatorial optimization or operational research and
knowledge in Machine Learning or Statistical Physics. Programming skills in C++ and/or Python and/or
Julia with a Machine Learning framework (Pytorch, JAX. . . ) will be much appreciated.
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