

Detection and structure characterization of proteins by surface enhanced Raman spectroscopy

Maximilien COTTAT

05/22/2018

Outline

- Introduction
 - Raman and SERS spectroscopy
 - Substrates
- SERS application
 - Protein detection
 - Identification
 - Specific detection
 - Detection in real sample (serum and saliva)
 - Characterization of protein structure
 - Impact of mutation
 - Phosphorylation effect
- Conclusion

Raman spectroscopy

- Vibrational spectroscopy
- Non destructive technic
- one molecule = one spectrum

Décalage Raman (cm⁻¹)

Raman intensity is very weak => need to enhance the signal

Surface enhanced Raman scattering

Surface enhanced Raman scattering

$${f E}_{
m SERS} \propto {f f}_1 \cdot {f E}_i \ {f I}_{
m SERS} \propto {f f}_1^2 \cdot {f I}_i$$

Surface enhanced Raman scattering

$$\begin{array}{ccc} \mathsf{E}_{\mathsf{SERS}} \propto & \mathsf{f}_1 \, . \, \mathsf{f}_2 \, . \, \mathsf{E}_i \\ \mathsf{I}_{\mathsf{SERS}} \propto & \mathsf{f}_1^2 \, . \, \mathsf{f}_2^2 \, . \, \mathsf{I}_i \end{array}$$

SERS substrates

• Gold nanostructures produced by electron-beam lithography (EBL) :

nanocylinders

coupled nanorods

• Laser wavelength : 660 nm and 785 nm

Detection of protein : Manganese SuperOxide Dismutase (MnSOD)

Cottat M. et al, JPCC, 2015

Aptamer-MnSOD affinity (by QCM)

K_D (dissociation constant) : 313.10⁻⁹ M => strong affinity

SERS detection of MnSOD

Concentration study (nanocylinders)

Concentration study (nanorods)

Specificity test

No binding between MnSOD and MOH

Specificity test

No binding between MnSOD and MOH

BSA does not bind to aptamer

Biosensor : specific detection of MnSOD

MnSOD detection in serum

MnSOD concentration : 10⁻⁸ M (ELISA)

Normalized SERS intensity Serum DNA 1000 1200 1400 1600 800 600 Raman shift (cm⁻¹)

MnSOD detection in saliva

Biosensor characteristic

≻MnSOD detection from 10 nM.

Biosensor characteristic

≻MnSOD detection from 10 nM.

Specific interaction between MnSOD and aptamer

Biosensor characteristic

➤MnSOD detection from 10 nM.

Specific interaction between MnSOD and aptamer

Detection of protein of interest in physiocological media (serum and saliva).

Structure characterization of Spleen tyrosine kinase (Syk) protein

Cottat M. et al, Scientific Report, 2017

Syk structures

Model obtained by electronic microscopy

Arias-Palomo et al., Biochim Biophys Acta, 2009

Syk pSyk

SERS analysis of sequence modifications : - mutation - phosphorylation

Mutation effect on Syk

Kinase domain mutated => ATP site affected => inactive

Mutation effect on SERS spectrum

Mutation => different SERS spectra => structure modification

Phosphorylation impact

Phosphorylation level

wild and mutated: unphosphorylated pSyk : highly phosphorylated

Kinase activity

wild and mutated : unphosphorylated=> inactive
 pSyk : highly phosphorylated=> active

Phosphorylation fluctuation

phosphatase CIP (Syk) => decrease of the phosphorylation level

Impact of phosphorylation on SERS spectrum

SERS spectra of various Syk forms

Different spectra signature: different protein structure

SERS spectra of various Syk forms

Model of wild type Syk structure

Wild type Syk

Model of the phosphorylation impact on Syk structure

Variation of phosphorylation => important modification of Syk structure

Inserm

Institut national de la santé et de la recherche médicale

ISTITUTO ITALIANO DI TECNOLOGIA

Thank you for your attention